Exam. Code : 103202
Subject Code : 1025

B.A./B.Sc. $2^{\text {nd }}$ Semester MATHEMATICS

Paper-I (Calculus and Differential Equations)
Time Allowed-2 Hours] [Maximum Marks-50
Note :- There are eight questions of equal marks. Candidates are required to attempt any four questions.

1. (a) Show that the asymptotes of the curve :
$x^{4}-5 x^{2} y^{2}+4 y^{4}+x^{2}-y^{2}+x+y+1=0$
Cut the curve in atmost eight points which lie on a rectangular hyperbola.
(b) Find the intervals in which the curve
$y=(\cos x+\sin x) e^{x}$ is concave upwards or downwards in $(0,2 \pi)$. Find also the points of inflexion.
2. (a) Find the position and nature of double points on the curve :

$$
(2 y+x+1)^{2}-4(1-x)^{5}=0
$$

(b) Trace the curve $\mathrm{x}^{3}+\mathrm{y}^{3}=3 \mathrm{axy}$, a $>0.5+5=10$
3. (a) Evaluate $\int \frac{\cosh x+\sinh x}{\cosh ^{2} x+\sinh ^{2} x} d x$
(b) Prove that
$\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{1}{\sqrt{1-\mathrm{e}^{2} \sin ^{2} \mathrm{x}}} \mathrm{dx}=1+\frac{1^{2}}{2^{2}} \mathrm{e}^{2}+\frac{1^{2} \cdot 3^{2}}{2^{2} \cdot 4^{2}} \mathrm{e}^{4}+\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{2^{2} \cdot 4^{2} \cdot 6^{2}} \mathrm{e}^{6}+\ldots \ldots \ldots$. where $0<\mathrm{e}<1$.
4. (a) Find the entire length of the curve $\left(\frac{x}{a}\right)^{\frac{2}{3}}+\left(\frac{y}{b}\right)^{\frac{2}{3}}=1$.
(b) Prove that the area of the curve $a^{4} y^{2}=x^{5}(2 a-x)$ to that of a circle of radius ' a^{\prime} $(a>0)$ is as $5: 4$.
5. (a) Solve $x^{2}-\frac{x y}{p}=f\left(y^{2}-x y p\right)$ where $p=\frac{d y}{d x}$.
(b) Solve $\left(x y^{2}+2 x^{2} y^{3}\right) d x+\left(x^{2} y-x^{3} y^{2}\right) d y=0$.
6. (a) Find the complete primitive and singular solution of $\left(a^{2}-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}+\left(b^{2}-y^{2}\right)=0$.
(b) Show that the orthogonal trajectory of a system of concurrent straight lines is a system of concentric circles and conversely.
7. (a) Solve $\left(D^{2}-3 D+2\right) y=\cos \left(e^{-x}\right)$ where $\frac{d}{d x}=D$ by method of variation of parameters.
(b) Solve $\frac{d^{4} y}{d x^{4}}-y=x^{2} \sin x$.

